f1(0) -> 1
f1(s1(x)) -> g2(x, s1(x))
g2(0, y) -> y
g2(s1(x), y) -> g2(x, +2(y, s1(x)))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
g2(s1(x), y) -> g2(x, s1(+2(y, x)))
↳ QTRS
↳ DependencyPairsProof
f1(0) -> 1
f1(s1(x)) -> g2(x, s1(x))
g2(0, y) -> y
g2(s1(x), y) -> g2(x, +2(y, s1(x)))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
g2(s1(x), y) -> g2(x, s1(+2(y, x)))
+12(x, s1(y)) -> +12(x, y)
G2(s1(x), y) -> +12(y, s1(x))
G2(s1(x), y) -> G2(x, +2(y, s1(x)))
G2(s1(x), y) -> G2(x, s1(+2(y, x)))
F1(s1(x)) -> G2(x, s1(x))
G2(s1(x), y) -> +12(y, x)
f1(0) -> 1
f1(s1(x)) -> g2(x, s1(x))
g2(0, y) -> y
g2(s1(x), y) -> g2(x, +2(y, s1(x)))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
g2(s1(x), y) -> g2(x, s1(+2(y, x)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
+12(x, s1(y)) -> +12(x, y)
G2(s1(x), y) -> +12(y, s1(x))
G2(s1(x), y) -> G2(x, +2(y, s1(x)))
G2(s1(x), y) -> G2(x, s1(+2(y, x)))
F1(s1(x)) -> G2(x, s1(x))
G2(s1(x), y) -> +12(y, x)
f1(0) -> 1
f1(s1(x)) -> g2(x, s1(x))
g2(0, y) -> y
g2(s1(x), y) -> g2(x, +2(y, s1(x)))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
g2(s1(x), y) -> g2(x, s1(+2(y, x)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(x, s1(y)) -> +12(x, y)
f1(0) -> 1
f1(s1(x)) -> g2(x, s1(x))
g2(0, y) -> y
g2(s1(x), y) -> g2(x, +2(y, s1(x)))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
g2(s1(x), y) -> g2(x, s1(+2(y, x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(x, s1(y)) -> +12(x, y)
POL( +12(x1, x2) ) = 2x1 + 2x2 + 2
POL( s1(x1) ) = 3x1 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
f1(0) -> 1
f1(s1(x)) -> g2(x, s1(x))
g2(0, y) -> y
g2(s1(x), y) -> g2(x, +2(y, s1(x)))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
g2(s1(x), y) -> g2(x, s1(+2(y, x)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
G2(s1(x), y) -> G2(x, +2(y, s1(x)))
G2(s1(x), y) -> G2(x, s1(+2(y, x)))
f1(0) -> 1
f1(s1(x)) -> g2(x, s1(x))
g2(0, y) -> y
g2(s1(x), y) -> g2(x, +2(y, s1(x)))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
g2(s1(x), y) -> g2(x, s1(+2(y, x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G2(s1(x), y) -> G2(x, +2(y, s1(x)))
G2(s1(x), y) -> G2(x, s1(+2(y, x)))
POL( G2(x1, x2) ) = max{0, x1 - 1}
POL( 0 ) = 1
POL( s1(x1) ) = 3x1 + 3
POL( +2(x1, x2) ) = x2 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f1(0) -> 1
f1(s1(x)) -> g2(x, s1(x))
g2(0, y) -> y
g2(s1(x), y) -> g2(x, +2(y, s1(x)))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
g2(s1(x), y) -> g2(x, s1(+2(y, x)))